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A MODERN statement of. the general Tauberian theorem runs as
follows; " If G is locally compact Abelian group, then every proper
closed ideal of (G) is included in a regular maximal ideal Neither
this, nor the work of N. Wiener^ from which it was generalized, fur
nishes any motivation for the classical forms. None of these
approaches, including that of S. Bochner,=' are of any help in findmg
the Tauberian convergence conditions associated with a given regular
method ofsummability. This note points out the existence of a unified
method for deriving the major classical Tauberian theorems, defined
as those obeying conditions (1) and (2) below.

In what follows, the bounded sequences are the partial sums
of an infinite series of real terms E a„, so that a„ •= s„ — Sum
mability means replacement of {j„} by linear transforms:

5' (0 = ZPu (0 •?,.; Pn (0 real with real t > 0. (1)
n=l

If [t) -^s as t tends to some fixed critical value r*, (which we shall
eventually take as t* = co) then the series E a,, is said to be summable
to 5 by that method of summability. The method is regular if any
series E a„ is summable to the value s whenever it converges to s. The
conditions necessary and sufficient thereto are that EP„{t)->], and
P„(0—>0 for each n as t*.

It is noteworthy that the commonly used methods* of summability
obey more stringent conditions besides those of regularity, namely:—

S^1} ^ ^
These make {P„ (f)} a probability distribution for each value of t.

That is, (0 may be treated as the probabiUty with which a stochastic
variable Z, assumes the integral value n. The sum in (1) is then the
expectation (mean value) of the function s„ = s (X). This suggests the
further use of probability methods. The particular method followed

' here is to derive a continuous limiting distribution from P„ (t) as t-^t*.
If then s„ can simultaneously be made to tend to a continuous limiting
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function, the problem of convergence reduces to the form of that limit
function. The method followed meaiis, in general, the use of an
increasingly larger scale for the real variable which initially assumed
the integral values n. Though illustratedfor infinite series, the procedure
is also valid for integrals. The conditions (2) are also related to certain
Markov processes, but that will not be considered here.

Summability procedures of the type given in (1) and (2) measure
the limiting density of the sequence. For convergent sequences, the
density is unity at the value s, and zero everywhere else, in the limit
This means, in probability terms, that the (limiting) dispersion or
variance, the expectation of (j„ — must vanish. . That is equivalent
to the statement that the expectation of is in the limit. Similarly
for the higher moments. This gives us:

Lemma For a convergent a„ = (s„ - 0, and {j/}
has the sum s'' by any regular method of summability.

These necessary conditions are obvious, and hold for any regular /
method, whether (2) is fully obeyed or not. The restriction on the
fc-th moment does not, without convergence, imply 0. This may
be seen from the example: s„ = 1 when n = m^ and s„ = 0 otherwise,
which is summable (C, 1) to zero, with all its moments, though a„ tends
to no limit.

If the limiting probabihty distribution and the limiting function
derived from both exist, the vanishing of the dispersion becomes
a strong condition for summable sequences:

Lemma 2: If afunction f (x) of a stochastic variable has an expecta
tion, and if its variance {dispersion) vanishes, i.e.,

J / (x) dF=7; J{fix) - 7Y dF = 0 (3)

thenf(x)=f at each jump in F and almost everywhere on the range
where F has a non-vanishing derivative.

The proof is elementary, as rff > 0 for every probability distri
bution, the integrals being taken in the Lebesgue-Stieltjes sense. It
will be seen that dF> Q h essential over the entire range upon which
the stochastic variable is mapped. This means that (2) cannot be
generalized to cases where an arbitrary number of P„ (f) may be zero
or negative. Even if an infinite subsequence of P„ (t) vanishes identically
in t, nothing will be said about the behaviour of the corresponding sub
sequence of {j„}, which would have to be deleted for the Tauberian
theorem to have any meaning.
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I use this condition on the second moment solely as a temporary
prop. It will be shown that its purpose is served by the summability
itself.

2. Let an analytic function ^ (t), real over the real axis, be defined
by the power series:

^ (0 = ^0 + ht + + •• • + bj" +...; > 0 for all large n. (4)

Then P„ (0 = bj"l(j> (t) can be used in (1) and (2) for all ? > 0 through
out the interval of convergence. The critical value t* would be the
right-hand closure of the interval, which must be open to the right.
Borel summability is given by ^ (() = e\ t* = oo. For Abel summabi
lity, take ^ = 1/(1 — t), f* = I — 0, and so on.

The statistical properties of such functions as obey (4) have been
discussed elsewhere,^ and are quite easy to derive. In particular, the
expectation fj, (t) and variance (() of the stochastic variable X which
takes on the value it with probability hj"l<l> (t) are:

1 log ^
-- > (n — aV h t" — (5)

To apply these results, we have first to discuss conditions under
which a limiting function/(x) may be obtained from {^„}. We start
with/(x, ?o)> for some short of the critical value, defined as follows.
The function /(«, Q = for n-l<x<n the graph of f{x, fo)
is given by the straight line joining the ordinates j„_i, j„. This amounts
to replacement of in the summation by the moving average
ifone should extend the value /•„ (?) to hold over the interval (n, n -t-"l).
It may be possible to construct cases where the'new sequences are not
summable at all, let alone summable to the previous value; but this is
immaterial to our arguments, because such pathological sequences will
not converge in any case, and we are trying to deriye conditions under
which the summable sequence converges. So, it may be assumed that
our sequences permit this operation. The f{x, thus defined is
bounded and continuous. Then we change the x-scale, which is allowed
to tend to oo as /-> t*. This gives an indexed (directed) setf{x, t).
The conditions for the existence of a continuous limiting function are
given by:

Lemma 3: The indexed infinite set f {x, t) has a subset which tends
to a continuous limiting function f (x) with modified difference quotient
for any x-neighbourhood, if over that neighbourhood the f{x, t) and its
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difference-quotient in x are uniformlv bounded with the same bounds for
all values of the index t.

The proof follows from the classic theorem of Ascoli" on uniformly
bounded smooth sequences of continuous functions with uniformly
bounded difference quotients. For our purpose and special method
of construction, the limit of the sub-set is enough, because only large
values of the index n will appear, as the scale is increased, in any
^-neighbourhood. All functions/(x, i) of the set have the same bounds
as {s„}, which was a bounded sequence by hypothesis. The difference-
quotient for f(x, to) is either s„ —j„_i, or lies between two adjacent
values a„-i, in the neighbourhood of any point .t. For change of
scale by a factor A, this difference-quotient remains bounded if and only
if Xa„ is bounded. It will be shown that summability serves the purpose
of preventing more than one limit from existing, while the Tauberian
condition Xa„ = 0 (1) guarantees that every infinite sub-sequence has
at least one smooth limiting function. This is the substance of the
shnpler classical Tauberian theorems, excluding the ' hig'.i indices '
theorem.

3. We proceed to find the actual transformations for important
cases. For Borel summability, (j) (t) = exp t, which is the Poisson
distribution. The largest term V'jn! of the expansion of </> (t) is when
n is the integer nearest to t. Moreover, /x = o-^ = f for the mean value
and variance. The proper transformation is therefore x = (n —t)l-\/t,
where n is written for brevity for the original, continuous variable
whose integral values furnish the index for a„ and j„. This gives a
normal (Gaussian) distribution in the limit;

dF =(^) dx. (6)

This is well known from the properties of the Poisson distribution. The
same thing happens when (t) is an integral function of finite order.
The transformation is:

X =
(« - f^)

(7)

and the same limiting distribution is obtained as in (6). This is easily
seen from:

Lemma 4: An integral function whose Taylor series (4) has only
positive real coefficients is offinite order p if and only if lim = p.
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Proof.—From the Hadamard factorization theorem for integral
functions, it is easily shown that hnT o-2//x = p, the order of the integral
function. For the converse, we have by definition:

?! = i + C_C>o

If the superior limit of is p > 0, integration gives us a.exp.
for every e > 0 as a bounding function for / from above. This makes
/ an integral function of order p, by definition. It need not be pointed
out that polynomials are excluded from the discussion by the condition
that all Taylor coefficients must (eventually) be positive.

The scale factor is the standard deviation o-. For any fixed value
of X, n = a X+ jx, and the dominating term is clearly p.. As a func
tion of t, p. is asymptotic to n for that ^-neighbourhood. Thus the scale
is essentially proportional to ^/n, so that the difference quotient remains
bounded with Vn.a„. This bads to:

Theorem 1.- For ^(0 in (4) an entire function of finite order and
Pn = bj"!'t> (t), if {5,.} and are summable respectively to s and
with ^yn.a„ = Q{\), then 2 a„ converges to s.

Proof—An integrable limiting function f{x) formed from the
graphs of sequences exists by lemma 3. This must be constant almost
everywhere by lemma 2. As it is continuous, it is identically a constant.
Lemma 3, like the original Ascoli theorem, clearly applies to every
infinite sub-set of f{x, t). Therefore, if every infinite sub-set that con
verges to some limit function be struck off, at most a finite number of
fitnctions of the directed set can survive the deletion and they may be
ignored. All the limit functions will have the same bounds, and all
be continuous, with the same bound for the difference-quotient. How
ever, the summability condition then says that the mean value / is the
same for all, being the sum. Further, the vanishing dispersion, as in
lemma 2, makes them all coincident, and equal to the constant/. There
fore, the set/(x, t) converges to/ as obviously does the sequence {jJ.

The binomial distribution may also be brought under this theorem.
Here P„{t)= [[) p"q*-", t a positive integer, p + q= 1, 0<p < I.
Then p, = tp, = tpq. The transformation (7) again leads to the.
normal distribution (6). The Tauberian theorem is still = 0(1).
Euler summability is included in this, being the special case ^
Note the corollary that if 0 (1) is replaced by o (1) inthe theorem, then
the condition on the second moment may be omitted: If -^/n.a ->0

10
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then the limiting difference quotient exists and is zero, so that every
limiting function is a constant without appeal to probability arguments.
The summability condition inhibits subsequences tending to different
limits. The structure of this and other such probability-Tauberian
theorems shows that the difference between the 0 (1) and o (1) theorems
should not be very great, in spite of the formidable difficulties of tech
nique in passing from the original Tauber to the Littlewood theorem.

For 0 (0 an entire function of infinite order, no such completely
general result exists. There remains the case of a finite radius of con
vergence, which may be assumed to be unity without loss of generality.
The critical value is t* = 1, approached from the left. The series for
^ (t) must diverge here, and t = l be a singularity of ^6 (t), otherwise
P„(t) would not tend to zero, and the summability method, would fail.
Now the gap theorems, with the unit circle a natural boundary of ^ (0,
show that no unrestricted general result is to be obtained for this case,
though extensions such as the " high indices " theorem are possible
by specialization. We proceed to consider, in several stages, such
generality as is possible.

For the Abel-Tauber theorem, (0 = 1/(1 —t). The probability
distribution is the geometric progression, or the " regular absorption "
law. It is better to transform the parameter to z = — Ijlogt, with
z* = oo. Then we have

s'iz) ={l(8)

"The bracketed expression is asymptotic to 1/z, so that the transforma
tion is simply x = njz. The same transformation is to be utilized when
,j, (t) = 1/(1 —tf, where k is any positive integer; or, more generally,
whenever The limiting integral is of the form;

"=.rw) / ^
The formula can be extended to fractional k > 0, by simple comparison
of the orders of magnitude, term by term. For (C, 1) summability,
take P„ (z) = 1/z for «< z; P„ (t) = 0, n> z. The limit is the uni
form distribution; dF = dx, 0 < x < 1; dF = 0 elsewhere. The
transformation is again x = n/z, though z passes to the critical value
infinity only through positive integral values. The (C, k) summability
leads to the form

k U ix)il-xy-^dx. (10)



CLASSICAL TAUBERIAN THEOREMS 147

The equivalence between Cesaro and Holder sums of the same order
may be used to deduce the same ultimate limit-form for Holder means.
For Riesz means Rj,, the integral in (10) is actually used in direct fashion.
In these last cases, there is no infinite power series for some function
^ (t) as in (4), though equivalent summability procedures in series could
be constructed. The limiting process is more direct, and can make use
of the approximation to (piecewise) monotonic series by means of the
corresponding integrals. Thus for = —log (1 —t), b„ = l/«
(which is R. A. Fisher's probabiUty distribution for genes, insect species
caught in traps, etc.), the transformation can only be x = njz, but the
lower limit becomes'O; the, integrand isf(x) (exp-x)/x so that if one
passes to the limit, the limiting integral is improper! Nevertheless,
the Tauberian argument" holds, and all the previous results may be
obtained by restriction to any x-interval to the right of zero. This is
further necessary as x = 0' will in general be the solitary point of dis-
coiitinuity for f(x). Similarly for = l/« (log n)^ or l/n'\ or
1/nlogrt (loglog n)''... etc. with k<l. We have thus proved;

Theorem 2: For a (f> {t) in (4) with finite circle of convergence, the
Tauberian theorem—if one exists—can only be that E a„ converges to s
ifitissummable tos,the squared sequence summble to s'̂ , andna„ = 0 (1).
The theorem does hold when </> (t) = 1/(1 —^)^ or when b„ tends mono-
tonically to zero in the expansion of^,as well asfor all the Cesaro and
Holder means. The condition for Riesz means would be

=0(1).

4. It is seen that the possible types of Tauberian theorems are
rather limited. The condition on the second moment may always be
omitted if 0 is replaced by o. Forcontinuous summability, with integra
tion inplace of the discrete sum, the place of a„ is taken by the derivative,
or the difference quotient, when s^ is replaced by a continuousfunction.

It might be thought that the peculiar way in which the set of func
tions f{x, t) is constructed could lead to convergence without any inter
vening summability condition. For hypothetical conditions of type
n^a„ = 0{l), k> 1, convergence would have been trivially obtained.
But this is not true for the weaker conditions which alone are possible
for classical Tauberian theorems, as is seen by the harmonic series
a„ = l/«, where thesequences are unbounded. For bounded sequences,
a counter-example is constructed by taking a,, = ± l/«, the sign being
positive for the first N terms, negative till n = N\ and so on in blocks
of N' — consecutive terms, with a fairly large N. The sequences
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then oscillate between zero and log N approximately, without being sum-
mable. The situation, and the role of the condition m„ = 0 (1) may be
illustrated for all summability procedures where the larger coefficients
are of mutually comparable order, by consideration of (C, 1)
summability. Here, we assume without loss of generality that the sum
is zero. This may happen by limit-points of opposite signs balancing
out, which is prevented by the condition on the second moment.
Assume therefore that the (C, 1) summable series has eventually only
non-negative sequences. For convergence, a„-^0 is necessary, which
means that for the sub-sequence of " crest" terms |ay| must tend to zero
nionotonically. The sequence {i'J, being bounded, must have at least
one cluster point; the summabiUty condition shows that zero must be
one of the cluster points. Suppose s„ exceeds some fixed value h> 0
infinitely often so that the series does not converge. The least effect
on the average in the (C, 1) sum would be when some s„ is close to zero,
and the subsequent terms are all + till h is exceeded, and then
— Oy till the sequence returns to the neighbourhood of 0 again.
The minimum contribution to the Cesaro sum would then be
pip + 1)a^liv + 2p), where 2p is the number of terms in this grouping.
However, p = hja^, so that the Cesaro sum has at least the value
h(h+ a,)j{2h + va^). Thus, if m„ exceeds any preassigned value, it
would be possible to have an arbitrarily small contribution to the (C, 1)
Slim from the terms away from 0. With bounded na„, the only way
whereby the (limiting) sum rdust necessarily vanish is for h to be zero,
so that no other limit point than 0 is possible for {j,,}. The condition
na„ = 0(1) includes the case where j„ may have either sign is
covered a fortiori by the same condition, which suffices for the extreme
case. This elementary analysis shows that the structure of the 0 and o
results are substantially equivalent for all cases under Theorem 2. It
supplies a motivation for the na,„ which appears as the ' best possible'
restriction.

It remains to show for the general case that the condition on the
second moment may always be discarded. Lemma 3 and the Tauberian
condition yield at least one subsequence from f{x, t) which tends to a
continuous function f{x). Suppose that at Xq, there were at least one
limiting value other than /(xq). Then another subsequence can be
foundtending to that value atxp. It may be supposed that the new
value is greater than / (xj. From this sequence, another infinite sub
sequence may be chosen to tend to a limit at a point Xj, and this process
may be continued over a denumerable set of points, dense over some
suitable interval containing Xq. The Lipschitz condition on/(x, t) then
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gives a continuous limit function h (x) > f{x) over, some interval about
X= Xq. However, the sum, the proper limit of s' (/) in (1), exists regard
less of how Also, P„(0 tends, by hypothesis, to a continuous
probability distribution. These data lead to a Contradiction, for the
range of the limiting integral may be divided into several different inter
vals; one (which includes Xq) can be made to yield two different contri
butions to the sum, from /j (x) and f{x), while everywhere else, we agree •
to take/(x) alone. This is permissible inasmuch as our limiting process
was by finite intervals; the contribution to the sum could be calculated
from any infinite sub-set of functions, separately for each interval.
Therefore, one and only one limiting function /(x) can exist.

From the method of construction, we have lim/(xq, 0 = lim
and Im / (xq, t) = Im because o-Xq or zxo must pass through every

large integral value. Therefore, if/(xq, 0-^/(xo), the sequence
must converge to /(xo) and, moreover, /(x) =/(xo). So, we have

Theorem 3: The condition on the second moment may be dropped
from the general Tauberian theorems 1 and 2, whenever the limiting pro
bability density exists, and is not zero over any sub-interval.

The main results of this paper were presented in a lecture to the
Mathematical Institute, Academia Sinica, Peking, on May 10, 1957.
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